National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Development and differentiation of different types of yeast colonies: Regulation of metabolic diversification and development of cells with novel properties
Maršíková, Jana
Yeasts are unicellular organisms, but on a solid substrate they are capable of forming complex organized structures that behave like primitive multicellular organisms. Examples of these structures include colonies and biofilms, whose cells interact with each other, coordinate their growth and development, differentiate spatially and form specialized cell subpopulations in which specific processes and regulatory pathways occur. The basis of cellular differentiation and specialization is the formation of gradients of nutrients, metabolites and signaling molecules. Thus, multicellular yeast communities differ significantly from planktonic populations in their characteristics. The aim of this work is to increase knowledge related to the development and differentiation of both smooth and structured colonies of the yeast Saccharomyces cerevisiae. The literature introduction of the thesis provides an overview of the current knowledge on the development of yeast colonies and biofilms, especially of S. cerevisiae species, and also includes selected regulations important for the formation of multicellular populations. The thesis provides insights into the antagonistic function of the transcriptional regulators Cyc8p and Tup1p in the development of structured biofilm colonies. Genome-wide transcriptomic...
Development and differentiation of different types of yeast colonies: Regulation of metabolic diversification and development of cells with novel properties
Maršíková, Jana ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee) ; Demnerová, Kateřina (referee)
Yeasts are unicellular organisms, but on a solid substrate they are capable of forming complex organized structures that behave like primitive multicellular organisms. Examples of these structures include colonies and biofilms, whose cells interact with each other, coordinate their growth and development, differentiate spatially and form specialized cell subpopulations in which specific processes and regulatory pathways occur. The basis of cellular differentiation and specialization is the formation of gradients of nutrients, metabolites and signaling molecules. Thus, multicellular yeast communities differ significantly from planktonic populations in their characteristics. The aim of this work is to increase knowledge related to the development and differentiation of both smooth and structured colonies of the yeast Saccharomyces cerevisiae. The literature introduction of the thesis provides an overview of the current knowledge on the development of yeast colonies and biofilms, especially of S. cerevisiae species, and also includes selected regulations important for the formation of multicellular populations. The thesis provides insights into the antagonistic function of the transcriptional regulators Cyc8p and Tup1p in the development of structured biofilm colonies. Genome-wide transcriptomic...
The development of swine B cells and the role of gama delta T lymphocytes in immunization of naive immune system.
Štěpánová, Kateřina
Thesis summary The process of B cell lymphogenesis in swine remains uncertain. Some reports indicate that pigs belong to a group of animal that use ileal Peyers's patches (IPP) for the generation of B cells while others point to the possibility that the bone marrow is functional throughout life. The functional subpopulations of B cells in swine are also unknown. Together with other ruminants, and also birds, γδ T cells in swine may account for >70% of all T cells which is in apparent contrast with humans and mice. The purpose of this thesis was to address these discrepancies and unresolved issues. The results disprove the existing paradigm that the IPP is primary lymphoid tissue and that B cells develop in IPP in an antigen-independent manner. On the other hand, it shows that bone marrow is fully capable of B cell lymphogenesis and remains active at least for the same period of time as it had been speculated for the IPP. This thesis also identified functionally different subsets of porcine peripheral B cells, and shows that CD21 molecules can be expressed in differential forms. Finally, this thesis identifies two lineages of γδ T cells that differ in many functional and phenotype features. This finding may explain why γδ T cells constitute of minority of lymphocytes in circulation of humans and mice.
Phenotypic switching and cell differentiation in yeast Cryptococcus neoformans
Bauer, Martin ; Kuthan, Martin (advisor) ; Abrhámová, Kateřina (referee)
Cryptococcus neoformans is an opportunistic pathogenic yeast causing around 600 000 deaths annually. Its ability to cause a chronic infection is given by the emergence of different morfotypes. These morphotypes differ in cell structures and mechanisms (virulence factors) which have an influence on the resistance to stress factors encountered in the host. This work first describes molecular mechanisms of formation of these virulence factors. Next, it presents morphotypes occurring during infection and the hypovirulent pseudohyphal morphotype. However, this morphotype is interesting because of a modification in the signalisation leading to its manifestation. Finally, described signalling pathways present possible ways of regulating the virulence factors, and so the manifestation of different morphotypes. Understanding these signalling pathways could ultimately lead to improving the development of new drugs, given that Cryptococcus neoformans is highly resistant to the existing ones. Keywords: Cryptococcus neoformans, phenotypic switching, titan cells, cell differentiation, virulence, Vad1, Rim101, Usv101, RAM
Analýza tvorby xylému ve dvou porostech odlišného věku u jedinců smrku ztepilého (Picea abies (L.) Karst)
Rolincová, Petra
Analysis of xylem formation in the stands of different ages was realized in research area in Drahany Highlands. The main objective was to compare the growth dynamics between young and old trees during the growing season 2014. Samples were taken at weekly intervals by means of Trephor tool. For these samples were made the micro-incisions with using the method impregnation microcores paraffin and slicing on rotary microtome. The results were compared with studies with the same focus. Cambial activity of old trees was 20 days shorter than in case of young trees and the number of cambial cells of old trees was smaller than young trees. Trend of xylem cell development was the same for both age groups, but in old trees the beginning of differentiation was shifted by 11-14 days later. Production rate of cells was higher in young trees. Total number of cells of newly formed annual ring was in young trees 42 % higher.
The development of swine B cells and the role of gama delta T lymphocytes in immunization of naive immune system.
Štěpánová, Kateřina
Thesis summary The process of B cell lymphogenesis in swine remains uncertain. Some reports indicate that pigs belong to a group of animal that use ileal Peyers's patches (IPP) for the generation of B cells while others point to the possibility that the bone marrow is functional throughout life. The functional subpopulations of B cells in swine are also unknown. Together with other ruminants, and also birds, γδ T cells in swine may account for >70% of all T cells which is in apparent contrast with humans and mice. The purpose of this thesis was to address these discrepancies and unresolved issues. The results disprove the existing paradigm that the IPP is primary lymphoid tissue and that B cells develop in IPP in an antigen-independent manner. On the other hand, it shows that bone marrow is fully capable of B cell lymphogenesis and remains active at least for the same period of time as it had been speculated for the IPP. This thesis also identified functionally different subsets of porcine peripheral B cells, and shows that CD21 molecules can be expressed in differential forms. Finally, this thesis identifies two lineages of γδ T cells that differ in many functional and phenotype features. This finding may explain why γδ T cells constitute of minority of lymphocytes in circulation of humans and mice.
The development of swine B cells and the role of gama delta T lymphocytes in immunization of naive immune system.
Štěpánová, Kateřina ; Šinkora, Marek (advisor) ; Macela, Aleš (referee) ; Faldyna, Martin (referee)
Thesis summary The process of B cell lymphogenesis in swine remains uncertain. Some reports indicate that pigs belong to a group of animal that use ileal Peyers's patches (IPP) for the generation of B cells while others point to the possibility that the bone marrow is functional throughout life. The functional subpopulations of B cells in swine are also unknown. Together with other ruminants, and also birds, γδ T cells in swine may account for >70% of all T cells which is in apparent contrast with humans and mice. The purpose of this thesis was to address these discrepancies and unresolved issues. The results disprove the existing paradigm that the IPP is primary lymphoid tissue and that B cells develop in IPP in an antigen-independent manner. On the other hand, it shows that bone marrow is fully capable of B cell lymphogenesis and remains active at least for the same period of time as it had been speculated for the IPP. This thesis also identified functionally different subsets of porcine peripheral B cells, and shows that CD21 molecules can be expressed in differential forms. Finally, this thesis identifies two lineages of γδ T cells that differ in many functional and phenotype features. This finding may explain why γδ T cells constitute of minority of lymphocytes in circulation of humans and mice.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.